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We report some improvements to the gradient ascent pulse engineering (GRAPE) algorithm for optimal
control of spin ensembles and other quantum systems. These include more accurate gradients, conver-
gence acceleration using the Broyden–Fletcher–Goldfarb–Shanno (BFGS) quasi-Newton algorithm as well
as faster control derivative calculation algorithms. In all test systems, the wall clock time and the conver-
gence rates show a considerable improvement over the approximate gradient ascent.
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1. Introduction

An optimal control problem consists in bringing a dynamic sys-
tem from one state to another to a given accuracy with minimum
expenditure of effort [1–3]. Such tasks are encountered in optical
spectroscopy [4–6], magnetic resonance [7–12], spin dynamics
[13,14] and the emerging field of quantum information processing
[15–19]. While many variations exist in practice [20–22], depend-
ing on the desired outcome and the constraints placed on the solu-
tion by instrumental limitations [1,23,24], they can all be broadly
classified into gate design problems [11,25], where a specific uni-
tary transformation of the entire state space is sought, and state
control problems [10,26–28], where the population is to be moved
from one specific state to another without conditions on the
dynamics of other states. Because any gate design problem can
be represented as a state control problem in a space of higher
dimension [23,25], we will only consider the state control formula-
tion below.

The state of a quantum system can be described by a density
operator q̂ðtÞ, whose evolution is governed by the quantum Liou-
ville equation [29]:

@

@t
q̂ðtÞ ¼ �i ĤðtÞ; q̂ðtÞ

h i
þ ^̂Rq̂ðtÞ ð1Þ

where ĤðtÞ is a possibly-time dependent Hamiltonian and ^̂R is the
relaxation superoperator. It is often convenient to carry out the cal-
culations in Liouville space by replacing a matrix representation of
ll rights reserved.

), glaser@tum.de (S.J. Glaser),
q̂ðtÞwith a vector jq̂ðtÞi obtained by stacking the columns of q̂ðtÞ. In
this representation, the equation acquires the following form:
@

@t
jq̂ðtÞi ¼ �i^̂LðtÞ q̂ðtÞj i; ^̂LðtÞ ¼ Ê� ĤðtÞ � ĤðtÞT � Êþ i^̂R ð2Þ

where Ê is the unit matrix of the same dimension as Ĥ [29] and ^̂R is
the Liouville space representation of the relaxation superoperator.
The general solution may be formally written as:

jq̂ðtÞi ¼ expðOÞ �i
Z t

0

^̂LðtÞdt
� �

jq̂ðtÞi ð3Þ

where exp(O) indicates Dyson’s time-ordered exponential [30]. Gi-
ven a fixed grid of points {t1, ... , tN}, the density matrix at a partic-
ular grid point n is then given by:

jq̂ðtnÞi ¼ ^̂Pn:::
^̂P2

^̂P1 q̂ð0Þj i; ^̂Pn ¼ expðOÞ �i
Z tn

tn�1

^̂LðtÞdt
� �

ð4Þ

A state control problem consists in finding such ĤðtÞ as would max-
imize the population of a given target density matrix r̂j i after evo-
lution from a given initial state jq̂ð0Þi under the total Liouvillian ^̂LðtÞ
[23,28]:

ĤoptðtÞ 2 arg max
ĤðtÞ

ðhr̂jq̂ðtNÞiÞ ð5Þ

where the maximum is sought in the class of square-integrable Her-
mitian matrix valued functions of time. From the experimental per-
spective, not every part of ĤðtÞ can be modified at will, and it is
common to separate it into the ‘‘drift’’ and the ‘‘control’’ parts:

ĤðtÞ ¼ Ĥ0 þ
X

k

cðkÞðtÞĤk ) ^̂LðtÞ ¼ ^̂L0 þ
X

k

cðkÞðtÞ^̂Lk

^̂L0 ¼ Ê� Ĥ0 � ĤT
0 � Êþ i^̂R; ^̂Lk ¼ Ê� Ĥk � ĤT

k � Ê

ð6Þ
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^̂L0 being the ‘‘drift’’ component deemed to be beyond our direct
influence and ^̂Lk are the ‘‘control’’ components, whose contributions
may be varied experimentally [13]. Various constraints are often
placed on the control functions c(k)(t), mostly to enforce the instru-
mental limitations [20,21]. The optimization problem in Eq. (5) is
difficult to solve in full generality, and it is common to simplify
the description of ĤðtÞ by assuming the control functions to be
piecewise-constant with fixed switching times [9,12]:

cðkÞðtÞ ¼ cðkÞn ; tn�1 < t < tn ð7Þ

This makes the problem finite-dimensional and facilitates numeri-
cal solutions. In practice this is often not an approximation, since
the actual output of many hardware devices, e.g. waveform genera-
tors in NMR spectroscopy, can be made piecewise-constant. Under
this assumption, the time-ordered exponential (a notoriously com-
plicated object from the numerical calculation perspective) in Eq.
(4) simplifies into a simple matrix exponential:

^̂Pn ¼ expðOÞ �i
Z tn

tn�1

^̂LðtÞdt
� �

¼ exp �i ^̂L0 þ
X

k

cðkÞn
^̂Lk

 !
Dt

" #
ð8Þ

where Dt is the time grid spacing. Progress can then be made with
the optimization problem in Eq. (5), because the gradient of the er-
ror functional 1� hr̂jq̂ðtNÞi with respect to the amplitude of control
k at time step n is now easily computed:

@

@cðkÞn

r̂jq̂ðtNÞh i ¼ @

@cðkÞn

r̂ ^̂PN . . .
^̂Pn . . .

^̂P1

��� ���q̂ð0ÞD E

¼ r̂ ^̂PN . . .
^̂Pnþ1

@
^̂Pn

@cðkÞn

^̂Pn�1 . . .
^̂P1

�����
�����q̂ð0Þ

* +

¼ ^̂Pynþ1 . . .
^̂PyN r̂j i

� �y @ ^̂Pn

@cðkÞn

^̂Pn�1 . . .
^̂P1 q̂ð0Þj i

� �
ð9Þ

This effectively means that the destination state has to be propa-
gated backward to time point tn, the source state has to be propa-
gated forward to time point tn�1 and the scalar product with the
derivative of the propagator for the time step n has to be taken.
In practice [7,9,12,28], the entire forward trajectory is computed
from q̂ð0Þ, the entire backward trajectory is computed from r̂ and
then the two are folded in each step with the propagator derivatives
as prescribed by Eq. (9).

2. Calculation of control derivatives

The expression for the propagator derivative suggested in the
paper introducing the GRAPE method [9] reasonably assumes that
the control sequence discretization step is small:

@

@cðkÞn

^̂Pn ¼
@

@cðkÞn

exp �i ^̂L0 þ
X

k

cðkÞn
^̂Lk

 !
Dt

" #

¼ exp �i ^̂L0 þ
X

k

cðkÞn
^̂Lk

 !
Dt

" #
�i^̂LkDt þ OðDt2Þ
� �

¼ ^̂Pn �i^̂LkDt
� �

þ OðDt2Þ ð10Þ

this assumption makes the evaluation of control gradient very com-
putationally affordable – it introduces no new matrix–matrix mul-
tiplications beyond those used to compute the propagators, because
�i^̂LkDt and ^̂Pn can be multiplied sequentially into the vectors on
either side of the derivative in Eq. (9). The cost of the control gradi-
ent is therefore approximately equal to the cost of the trajectory
calculation. From Eq. (9), we have:
@

@cðkÞn

r̂jq̂ðtNÞh i ¼ ^̂Pyn . . .
^̂PyN r̂j i

� �y
�i^̂LkDt
� �

^̂Pn�1 . . .
^̂P1 q̂ð0Þj i

� �
þ OðDt2Þ ð11Þ

While the gradient ascent using this equation does in most cases
yield acceptable accuracy solutions, it has been recognized for some
time that the O(Dt2) residual tends to limit both the convergence
rate and the final accuracy achievable. As the gradient becomes
smaller during the minimization, it is the first term in Eq. (11) that
gets reduced, and the situation eventually emerges where the
approximation error dominates the gradient. This leads to the often
observed and much lamented ‘‘slowdown’’ of the GRAPE algorithm
as it approaches high transfer fidelities. It also scrambles the
approximate Hessians used by quasi-Newton methods, essentially
preventing their use. This may be seen directly by following the
O(Dt2) residual through Newton’s method:

f ð~xþ D~xÞ ¼ f ð~xÞ þ ðrf ð~xÞT þ OðDt2ÞÞD~xþ 1
2

D~xHD~xþ OðjD~xj3Þ

¼ f ð~xÞ þ rf ð~xÞTD~xþ 1
2

D~xHD~xþ OðDt2jD~xjÞ þ OðjD~xj3Þ

ð12Þ

Unless the time step Dt is chosen to be extremely small, the
OðDt2jD~xjÞ error term, which is linear in jD~xj, completely obscures
the Hessian term, which is quadratic in jD~xj. For typical NMR sys-
tems, this accuracy constraint places Dt into nanosecond range,
which makes the number of steps very large and causes difficulties
on the instrumental side.

In our experience, these problems can be removed at a reason-
able computational cost, if the exact propagator gradient is used,
rather than the first order approximation. The most straightfor-
ward avenue is to differentiate the Taylor or Chebyshev expansion
for the exponential directly [31]. In the case of the Taylor series,
this yields:

@

@cðkÞn

exp �i^̂LDt
h i

¼
X1
p¼1

ð�iDtÞp

p!

Xp�1

q¼0

^̂Lq^̂Lk
^̂Lp�q�1;

^̂L ¼ ^̂L0 þ
X

k

cðkÞn
^̂Lk ð13Þ

The second sum appears because ^̂L and ^̂Lk do not necessarily com-
mute. This formulation is computationally about as expensive as
the original exponential because matrices involved (particularly
^̂Lk) are often very sparse [32,33], but it is rather inconvenient be-
cause it involves double summation. A more computer-friendly ver-
sion is given by a commutator series, which is the direct extension
of Eq. (10):

@

@cðkÞn

^̂Pn ¼
@

@cðkÞn

exp �i^̂LDt
h i

¼ exp �i^̂LDt
h i

�i^̂LkDt þ Dt2

2
^̂L; ^̂Lk

h i�

þ iDt3

6
^̂L; ^̂L; ^̂Lk

h ih i
� Dt4

24
^̂L; ^̂L; ^̂L; ^̂Lk

h ih ih i
þ � � �

�
ð14Þ

This expression can be obtained by rotating summation indices in
Eq. (13):

X1
p¼1

ð�iDtÞp

p!

Xp�1

q¼0

^̂Lq^̂Lk
^̂Lp�q�1 ¼

X1
p¼0

X1
q¼0

ApBAq

ðpþ qþ 1Þ! ;

A ¼ �i^̂LDt; B ¼ �i^̂LkDt; ð15Þ

splitting the factorial in the denominator, then summing the series
into matrix exponentials
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1
ðpþ qþ 1Þ! ¼

1
p!q!

Z 1

0
ð1� aÞpaq da)

X1

p¼0

X1
q¼0

ApBAq

ðpþ qþ 1Þ! ¼ eA
Z 1

0
e�aABeaA da; ð16Þ

evaluating the integralZ 1

0
e�aABeaA da ¼

Z 1

0
e�adAaBda ¼ c½�adA�B;

cðzÞ ¼ ez � 1
z
¼
X1
n¼0

zn

ðnþ 1Þ! ; adxy ¼ ½x; y�
ð17Þ

and expressing powers of adA as nested commutators with A:

X1
m¼0

ð�adAÞm

ðmþ 1Þ! B ¼
X1
m¼0

ð�1Þm

ðmþ 1Þ! ½A;B�m;

½A;B�m ¼ ½A; ½A;B�m�1�; ½A;B�0 ¼ B ð18Þ

With Eqs. (14)–(18) in place, the expression for the control gradient
becomes:

@

@cðkÞn

r̂jq̂ðtNÞh i ¼ � ^̂Pyn . . .
^̂PyN r̂j i

� �y
X1
m¼0

ðiDtÞmþ1

ðmþ 1Þ!
^̂L0 þ

X
k

cðkÞn
^̂Lk;

^̂Lk

" #
m

 !
^̂Pn�1 . . .

^̂P1 q̂ð0Þj i
� �

ð19Þ

where the summation of the series is to be continued until the de-
sired accuracy (as indicated by the residual norm) is achieved. A few
initial orders of accuracy in the Taylor expansion of c(z) are plotted
in Fig. 1.

The numerical accuracy of Eq. (19) in finite-precision arithmetic
merits further discussion. As with all power series, the perfect sce-
nario from the numerical point of view is to have the norm of the
argument �i^̂LDt scaled into the unit interval – this avoids the
‘‘hump’’ in the convergence and keeps the terms well within the
accuracy limits imposed by 64-bit floating-point arithmetic. As
Fig. 2 demonstrates, adequate numerical accuracy is maintained
for k � i^̂LDtk < 30, but deteriorates rapidly thereafter. The standard
technique used to resolve this issue is known as ‘‘scaling and
squaring’’ [31,34]:

exp �i^̂LDt
� �

¼ exp
�i^̂LDt

2

 !2

ð20Þ

The product rule for the derivative makes the scaling and squaring
procedure for the derivative propagator slightly different:
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Fig. 1. Taylor approximation accuracy for |c(z)| as a function of approximation
order and matrix norm. It should be noted that only power series are in practice
affordable in Eq. (17) – any rational approximation would require computationally
expensive matrix inversions.
@

@cðkÞn

exp �i^̂LDt
� �

¼ exp
�i^̂LDt

2

 !
@

@cðkÞn

exp
�i^̂LDt

2

 !" #

þ @

@cðkÞn

exp
�i^̂LDt

2

 !" #
exp

�i^̂LDt
2

 !
ð21Þ

Because the exponential propagator itself is computed elsewhere in
the GRAPE procedure [9], the cost of the squaring step is modest –
two sparse matrix multiplications. Our experience with this proce-
dure has been very positive, it tolerates scaling factors in excess of
106, thus encompassing all practically encountered GRAPE algo-
rithm application situations.

If relaxation is negligible and the Hamiltonian dimension is
small enough to permit numerical diagonalization, the series in
Eq. (19) may be avoided because we can evaluate

c½adðiĤDtÞ�ð�iĤkDtÞ directly by diagonalizing Ĥ [8,22,31]. Let

Ĥ ¼ V̂K̂V̂ y, where V̂ is a unitary matrix whose columns are eigen-

vectors of Ĥ and K̂ is a diagonal matrix with the corresponding
eigenvalues kr along the diagonal. We then have:

D̂ðkÞ ¼ c adðiĤDtÞ
h i

�iĤkDt
� �

¼ V̂ Ĝ� B̂
� �

V̂ y

Grs ¼ c½iðkr � ksÞDt�; B̂ ¼ V̂ y �iĤkDt
� �

V̂
ð22Þ

where � denotes element-wise (Hadamard) matrix multiplication.
Using this formula, we have:

@

@cðkÞn

r̂jq̂ðtNÞh i ¼ ^̂Pyn . . .
^̂PyN r̂j i

� �y ^̂DðkÞ ^̂Pn�1 . . .
^̂P1 q̂ð0Þj i

� �

^̂DðkÞ ¼ D̂ðkÞ � Ê� Ê� D̂ðkÞT

ð23Þ

This method is the adaptation of the diagonalization method for
matrix functions – the matrix is transformed into its eigenframe,
the function is applied to the eigenvalues and the result is trans-
formed back into the original frame. It is not applicable to Hamilto-
nians with dimensions in excess of 104, because the eigenvector
array V̂ is often dense even for sparse Hamiltonians and overflows
the computer memory.

Eqs. (13)–(23) present an analytical formalism for the calcula-
tion of the control derivatives. A popular numerical alternative is
to use finite-difference approximations, e.g.:

@
^̂Pn

@cðkÞn

¼
^̂Pnð. . . ; cðkÞn þ h; . . .Þ � ^̂Pnð. . . ; cðkÞn ; . . .Þ

h
þ OðhÞ ð24Þ

@
^̂Pn

@cðkÞn

¼
^̂Pn . . . ; cðkÞn þ h; . . .
� �

� ^̂Pn . . . ; cðkÞn � h; . . .
� �

2h
þ Oðh2Þ ð25Þ

where the amplitude of the kth control at the nth time point is var-
ied by a finite amount h. Eqs. (24) and (25) are indicative – they are
the simplest examples of a large class of numerical finite-difference
approximations for the derivative [35]. The primary balance to be
maintained in this approach is between the approximation accu-
racy, the numerical accuracy and the computational cost of the
derivative.

The forward finite difference approximation in Eq. (24) has the
advantage of being computationally affordable – it only requires

the calculation of one extra exp �i^̂LDt
� �

q̂ product per step, which

may be carried out using Krylov subspace techniques, thus avoid-
ing matrix multiplications. From Eq. (9):
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@

@cðkÞn

r̂jq̂ðtNÞh i ¼ ^̂Pynþ1 . . .
^̂PyN rj i

� � @ ^̂Pn

@cðkÞn

^̂Pn�1 . . .
^̂P1 q̂ð0Þj i

� �

¼ ^̂Pynþ1 . . .
^̂PyN rj i

� � ^̂Pn cðkÞn þ h
� �

� ^̂Pn cðkÞn

� �
h

� ^̂Pn�1 . . .
^̂P1 q̂ð0Þj i

� �
þ OðhÞ ð26Þ

Approximations with a higher order of accuracy may be used at the
expense of having to calculate further exp �i^̂LDt

� �
q̂ products for

the extra stencil points. In common with the commutator series ap-
proach in Eq. (19), the finite difference method is applicable to dis-
sipative quantum systems, where anti-Hermitian terms may be
present in the Liouvillian. It should be noted that Eq. (26) only in-
volves a finite difference with respect to the step propagator – the
rest of the trajectory does not need to be recomputed. This is a
much more efficient arrangement as compared to the brute-force fi-
nite-differencing of r̂jq̂ðtNÞh i.

The accuracy of finite difference methods depends on the step
size h. In practical situations, the choice is constrained in two
ways: if the step is too large, the finite difference would not be a
good approximation to the derivative, and if the step is too small,
the number of accurate digits in the floating point representation
of the difference would reduce to none. In general, we do not have
sufficient information to make an a priori estimate for the finite dif-
ference approximation error (it requires the knowledge of higher
derivatives), but the numerical round-off error is a somewhat more
straightforward quantity. A reasonable strategy therefore is to
choose the smallest h for which the round-off error is guaranteed
to be below a given threshold. Assuming the approximation error
is indeed small for that choice of h, we can approximate a function
f(x) with a linear polynomial f(x + h) = f(x) + f 0(x)h for the purpose
of obtaining the required round-off error bound.

The evaluation of matrix exponentials is accurate up to a fixed
purely absolute error eA, which is a few orders of magnitude larger
than the machine precision eM (equal to 2.22 � 10�16 in 64-bit
arithmetic), because the norm of exponential time propagators in
quantum mechanics is less than or equal 1. The error incurred in
computing f(x + h) � f(x) is then 2eA plus at most eM(|f(x)| + |f 0(x)|h)
from truncating their difference. The finite difference approxima-
tion |h�1[f(x + h) � f(x)] � f 0(x)| then carries an absolute error
bounded by:

1
jhj 2eA þ eMjf ðxÞjð Þ þ eMjf 0ðxÞj: ð27Þ

This expression may be equated to the chosen error threshold and
solved for h, assuming that an order of magnitude estimate of |f 0(x)|
is available. Even if the norm of f 0(x) cannot be estimated a priori,
Eq. (27) can still be used to validate the choice of step a posteriori,
using the finite difference approximation to f 0(x).
The dependence of the approximation accuracy on the finite dif-
ference step size is illustrated in Fig. 3 – for large steps the error is
dominated by the approximation error of the finite difference,
which drops smoothly when the step is reduced. For small steps
the error is dominated by the numerical round-off errors, which in-
crease erratically as the numerical accuracy decreases.

The choice of the differentiation algorithm is ultimately left to
user’s discretion. The considerable improvement that better gradi-
ent accuracy brings to the asymptotic convergence rate is illus-
trated in Fig. 4 – for the spin chain in question, a pulse with 100
nanosecond time stepping is clearly outside the validity range of
the first-order approximation in Eq. (11), and further terms in Eq.
(19) are necessary to prevent the minimization process from halt-
ing when the insufficiently accurate gradient effectively sends the
system uphill.
3. GRAPE with quasi-Newton optimizers

The close relationship between optimal control and numerical
optimization methods is well researched [36–38] and the emerg-
ing numerical optimization methods (such as SQP [39]) have been
specialized to optimal control and successfully applied, for exam-
ple, to controlling fluid flow [40] or biological processes [41]. In
the magnetic resonance context, the above noted fact that the con-
trol gradient of the objective function is relatively cheap to com-
pute means that it is almost always advantageous to use the
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function evaluations per iteration (line search) and is therefore considerably slower
on the wall clock, as well as iteration count, than the three quasi-Newton methods.
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gradient history to build an approximation to the Hessian matrix,
which can then be used in quasi-Newton optimization algorithms,
which can exhibit super-linear convergence [42]. Because GRAPE is
a concurrent update algorithm [9], the standard quasi-Newton
methods may be used directly.

Several schemes exist for generating approximate Hessians
from the gradient history, the most notable being DFP [43] and
BFGS [42]:

HDFP
kþ1 ¼ E�

~gk~sT
k

~gT
k
~sk

� �
Hk E�

~sk~gT
k

~gT
k
~sk

� �
þ
~gk~gT

k

~gT
k
~sk
;

HBFGS
kþ1 ¼ Hk þ

~gk~gT
k

~gT
k
~sk
� ðHk~skÞðHk~skÞT

~sT
kHk~sk

;

~gk ¼ rf ð~xkþ1Þ � rf ð~xkÞ; ~sk ¼~xkþ1 �~xk ð28Þ

These pseudo-Hessians are constructed to satisfy the natural finite
difference condition:

rf ð~xkÞ ¼ rf ð~xkþ1Þ �Hkþ1ð~xkþ1 �~xkÞ ð29Þ

A necessary condition for Hk+1 to be negative definite is therefore
that

ð~xkþ1 �~xkÞTHkþ1ð~xkþ1 �~xkÞ ¼ ð~xkþ1 �~xkÞTðrf ð~xkþ1Þ � rf ð~xkÞÞ < 0

ð30Þ

but a useful property of BFGS and DFP update rules is that it is also a
sufficient condition, assuming that H0 was chosen to be negative
definite [42]. The iteration step (with optional line search) is then
performed as:

~xkþ1 ¼~xk � akH�1
k rf ð~xkÞ; ak > 0 ð31Þ

where ak is the line search parameter (ak = 1 corresponds to New-
ton iteration).

Because matrix inversions are expensive, it is in practice neces-
sary to use the corresponding update schemes for the inverse of
the Hessian:
ðH�1ÞBFGS
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ð32Þ
In the case of BFGS, a very memory-efficient procedure is available
for generating the next step vector directly from the past gradient
history, requiring no matrix storage. It is known as memory-limited
BFGS, or L-BFGS [44,45]. In the context of optimal control, the
number of variables often exceeds 104, and L-BFGS is the only
quasi-Newton method that is capable of handling such problems.
The performance of DFP, BFGS and L-BFGS for the optimization of
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a broadband magnetization inversion pulse in NMR spectroscopy is
illustrated in Fig. 5.
4. Conclusions and outlook

The GRAPE algorithm for control sequence optimization has the
benefit of computationally affordable gradients. Using the equa-
tions reported in this paper, their accuracy may be improved be-
yond the first order approximation and the result used to
generate approximate Hessians for quasi-Newton optimization.
In all test systems, the wall clock time and the convergence rates
show a considerable improvement over the approximate gradient
ascent – the ‘‘slowdown’’ problem disappears. The BFGS-GRAPE
procedure reported in this paper is implemented in the Spinach
software library [33].
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